Entropy Weighting Genetic k-Means Algorithm for Subspace Clustering

نویسندگان

  • Anil Kumar Tiwari
  • Lokesh Kumar Sharma
  • G. Rama Krishna
چکیده

This paper presents a genetic k-means algorithm for clustering high dimensional objects in subspaces. High dimensional data faces data sparsity problem. In this algorithm, we present the genetic k-means clustering process to calculate a weight for each dimension in each cluster and use the weight values to identify the subsets of important dimensions that categorize different clusters. This is achieved by including the weight entropy in the objective function that is minimized in the k-means clustering process. Further, the use of genetic algorithm ensure for converge to the global optimum. The experiments on UCI data has reported that this algorithm can generate better clustering results than other subspace clustering algorithms. General Terms Data Mining

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Soft Subspace Clustering Algorithm with Log-transformed Distances

Entropy weighting used in some soft subspace clustering algorithms is sensitive to the scaling parameter. In this paper, we propose a novel soft subspace clustering algorithm by using log-transformed distances in the objective function. The proposed algorithm allows users to choose a value of the scaling parameter easily because the entropy weighting in the proposed algorithm is less sensitive ...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering

Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...

متن کامل

A Text Clustering System based on k-means Type Subspace Clustering and Ontology

This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For unders...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010